APPROXIMATE INVERSE PRECONDITIONERS VIA
SPARSE-SPARSE ITERATIONS*

EDMOND CHOW'! AND YOUSEF SAAD?

Abstract. The standard incomplete LU (ILU) preconditioners often fail for general sparse in-
definite matrices because they give rise to ‘unstable’ factors L and U. In such cases, it may be
attractive to approximate the inverse of the matrix directly. This paper focuses on approximate
inverse preconditioners based on minimizing ||[I — AM||p, where AM is the preconditioned ma-
trix. An iterative descent-type method is used to approximate each column of the inverse. For this
approach to be efficient, the iteration must be done in sparse mode, i.e., with ‘sparse-matrix by
sparse-vector’ operations. Numerical dropping is applied to maintain sparsity; compared to previous
methods, this is a natural way to determine the sparsity pattern of the approximate inverse. This
paper describes Newton, ‘global’ and column-oriented algorithms, and discusses options for initial
guesses, self-preconditioning, and dropping strategies. Some limited theoretical results on the prop-
erties and convergence of approximate inverses are derived. Numerical tests on problems from the
Harwell-Boeing collection and the FIDAP fluid dynamics analysis package show the strengths and
limitations of approximate inverses. Finally, some ideas and experiments with practical variations
and applications are presented.

Key words. approximate inverse, preconditioning, Krylov subspace methods, threshold drop-
ping strategies

AMS subject classifications. 65F10, 65F35, 65F50, 65Y05

1. Introduction. The incomplete LU factorization preconditioners were origi-
nally developed for M-matrices that arise from the discretization of very simple partial
differential equations of elliptic type, usually in one variable. For the rather common
situation where the matrix A is indefinite, standard ILU factorizations may face sev-
eral difficulties, the best known of which is the encounter of a zero pivot. However,
there are other problems that are just as serious. Consider an incomplete factorization
of the form

(1.1) A=ILU+E

where F is the error. The preconditioned matrices associated with the different forms
of preconditioning are similar to

(1.2) L7'AU ' =1+ L'EU.

What is sometimes missed is the fact that the error matrix E in (1.1) is not as
important as the preconditioned error matrix L= EU~! shown in (1.2) above. When
the matrix A is diagonally dominant, L and U are typically well conditioned, and the
size of L~' EU ! remains confined within reasonable limits, typically with a clustering
of its eigenvalues around the origin. On the other hand, when the original matrix is
not diagonally dominant, L= or U~! may have very large norms, causing the error
L7'EU! to be very large and thus adding large perturbations to the identity matrix.
This form of instability was studied by Elman [14] in a detailed analysis of ILU and
MILU preconditioners for finite difference matrices. It can be observed experimentally

* This work was supported in part by the National Science Foundation under grant NSF/CCR-
9214116 and in part by NASA under grant NAG2-904.

T Department of Computer Science and Minnesota Supercomputer Institute, University of
Minnesota, 4-192 EE/CSci Bldg., 200 Union St., S.E., Minneapolis, Minnesota, 55455-0154
(chow@cs.umn.edu and saad@cs.umn.edu).

2 E. CHOW AND Y. SAAD

that ILU preconditioners can be very poor when L' or U~! are large, and that this
situation often occurs for indefinite problems, or problems with large nonsymmetric
parts.

One possible remedy that has been proposed is stabilized or perturbed incomplete
factorizations, for example [15] and the references in [25]. A numerical comparison
with these preconditioners will be given later. In this paper, we consider trying to
find a preconditioner that does not require solving a linear system. For example,
we can precondition the original system with a sparse matrix M that is a direct
approximation to the inverse of A. Sparse approximate inverses are also necessary
for incomplete block factorizations with large sparse blocks, as well as several other
applications, also described later.

We focus on methods of finding approximate inverses based on minimizing the
Frobenius norm of the residual matrix I — AM, first suggested by Benson and Fred-
erickson [5, 6]. Consider the minimization of

(1.3) F(M) = ||I — AM||3..

to seek a right approximate inverse. An important feature of this objective function
is that it can be decoupled as the sum of the squares of the 2-norms of the individual
columns of the residual matrix I — AM

(1.4) F(M) = |I - AM|% =) lle; — Amyl3

Jj=1

in which e; and m; are the j-th columns of the identity matrix and of the matrix
M, respectively. Thus, minimizing (1.4) is equivalent to minimizing the individual
functions

(1.5) fim) = llej = Am|l3, j=12,...,n.

This is clearly useful for parallel implementations. It also gives rise to a number of
different options.

The minimization in (1.5) is most often performed directly by prescribing a spar-
sity pattern for M and solving the resulting least squares problems. Grote and Si-
mon [19] choose M to be a banded matrix with 2p + 1 diagonals, p > 0, emphasizing
the importance of the fast application of the preconditioner in a CM-2 implementa-
tion. This choice of structure is particularly suitable for banded matrices.

Cosgrove, Diaz and Griewank [10] select the initial structure of M to be diagonal
and then use a procedure to improve the minimum by updating the sparsity pattern of
M. New fill-in elements are chosen so that the fill-in contributes a certain improvement
while minimizing the number of new rows in the least squares subproblem. In similar
work by Grote and Huckle [18], the reduction in the residual norm is tested for each
candidate fill-in element, but fill-in may be introduced more than one at a time.

In other related work, Kolotilina and Yeremin [23] consider symmetric, positive
definite systems and construct factorized sparse approximate inverse preconditioners
which are also symmetric, positive definite. Each factor implicitly approximates the
inverse of the lower triangular Cholesky factor of A. The structure of each factor is
chosen to be the same as the structure of the lower triangular part of A. In their more
recent work [24], fill-in elements may be added, and their locations are chosen such
that the construction and application of the approximate inverse is not much more

APPROXIMATE INVERSE PRECONDITIONERS 3

expensive on a model hypercube computer. Preconditioners for general systems may
be constructed by approximating the left and right factors separately.

This paper is organized as follows. In §2, we present several approximate inverse
algorithms based on iterative procedures, as well as describe sparse-sparse implemen-
tation and various options. We derive some simple theoretical results for approximate
inverses and the convergence behavior of the algorithms in §3. In §4, we show the
strengths and limitations of approximate inverse preconditioners through numerical
tests with problems from the Harwell-Boeing collection and the FIDAP fluid dynamics
analysis package. Finally in §5, we present some ideas and experiments with practical
variations and applications of approximate inverses.

2. Construction of the approximate inverse via iteration. The sparsity
pattern of an approximate inverse of a general matrix should not be prescribed, since
an appropriate pattern is usually not known beforehand. In contrast to the previous
work described above, the locations and values of the nonzero elements are deter-
mined naturally as a side-effect of utilizing an iterative procedure to minimize (1.3)
or (1.5). In addition, elements in the approximate inverse may be removed by a nu-
merical dropping strategy if they contribute little to the inverse. These features are
clearly necessary for general sparse matrices. In §§2.1 and 2.2 we briefly describe two
approaches where M is treated as a matrix in its entirety, rather than as individual
columns. We found, however, that these methods converge more slowly than if the
columns are treated separately. In the remaining sections, we consider this latter
approach and the various options that are available.

2.1. Newton iteration. As an alternative to directly minimizing the objective
function (1.3), an approximate inverse may also be computed using an iterative process
known as the method of Hotelling and Bodewig [20]. This method, which is modeled
after Newton’s method for solving f(z) = 1/x — a = 0, has many similarities to our
descent methods which we describe later. The iteration takes the form

Miy, = My(2I — AM;), i=0,1,...

For convergence, we require that the spectral radius of I — AMj be less than one, and
if we choose an initial guess of the form My = aA” then convergence is achieved if

2
0<a<m.

In practice, we can follow Pan and Reif [27] and use

1

o=
[AAT],

for the right approximate inverse. As the iterations progress, M becomes denser and
denser, and a natural idea here is to perform the above iteration in sparse mode [26],
i.e., drop some elements in M or else the iterations become too expensive. In this
case, however, the convergence properties of the Newton iteration are lost. We will
show the results of some numerical experiments in §4.

2.2. Global iteration. In this section we describe a ‘global’ approach to mini-
mizing (1.3), where we use a descent-type method, treating M as an unknown sparse
matrix. The objective function (1.3) is a quadratic function on the space of n x n

4 E. CHOW AND Y. SAAD

matrices, viewed as objects in R™ . The actual inner product on the space of matrices
with which the function (1.4) is associated is

(2.1) (X,Y) =tr(YTX).

One possible descent-type method we may use is steepest descent which we will de-
scribe later. In the following, we will call the array representation of an n? vector X
the n X n matrix whose column vectors are the successive n-vectors of X.

In descent algorithms a new iterate M, is defined by taking a step along a
selected direction G, i.e.,

Mpew = M + oG

in which « is selected to minimize the objective function associated with M,,¢,,. This
is achieved by taking

(R,AG) _ t2(RTAG)

(22) *=TAG, AG) ~ & (AG)TAG)

where R = I — AM is the residual matrix. Note that the denominator may be
computed as ||AG||%. After each of these descent steps is taken, the resulting matrix
M will tend to become denser. It is therefore essential to apply some kind of numerical
dropping, either to the new M or to the search direction G before taking the descent
step. In the first case, the descent nature of the step is lost, i.e., it is no longer
guaranteed that F(Mpe,) < F(M), while in the second case, the fill-in in M is more
difficult to control. We will discuss both these alternatives in §2.5.

The simplest choice for the descent direction G is to take it to be the residual
matrix R = I— AM , where M is the new iterate. The corresponding descent algorithm
is referred to as the Minimal Residual (MR) algorithm. In the simpler case where
numerical dropping is applied to M, our global Minimal Residual algorithm will have
the following form.

ALGORITHM 2.1. (Global Minimal Residual descent algorithm)

1. Select an initial M

2 Until convergence do

3. Compute G :=1— AM

4. Compute o by (2.2)

5 Compute M := M + oG

6 Apply numerical dropping to M
7. End do

Another popular choice is to take G to be the direction of steepest descent, i.e.,
the direction opposite to the gradient. Thinking in terms of n? vectors, the gradient
of F can be viewed as an n? vector g such that

F(z +e) = F(z) + (g,€) + O(llell*)

where (-,-) is the usual Euclidean inner product. If we represent all vectors as 2-
dimensional n x n arrays, then the above relation is equivalent to

F(X + E)=F(X) +(G,E) + O(| E|”).

This allows us to determine the gradient as an operator on arrays, rather than n?
vectors, as is done in the next proposition.

APPROXIMATE INVERSE PRECONDITIONERS 5

PROPOSITION 2.2. The array representation of the gradient of F with respect to
M is the matriz

G =-24TR

in which R is the residual matrix R =1 — AM.
Proof. For any matrix E we have

F(M+E)-—F(M) = tr(I-AM +E)T(I - A(M + E))
—tr(I — A(M)T(I - A(M))
= tr[(R— AE)"(R— AE) — R"R]
—tr [(AE)'R+ RTAE — (AE)Y(AE)]
= —2tr(RTAE) + tr(AE)T (AE)
= —2(ATR,E)+ (AE, AE).

Thus, the differential of F applied to E is the inner product of —2A” R with E plus
a second order term. The gradient is therefore simply —2ATR. O

The steepest descent algorithm consists of simply replacing G in line 3 of the MR
algorithm described above by G = AT R. This algorithm can be a very slow in some
cases, since it is essentially a steepest descent-type algorithm applied to the normal
equations.

In either global steepest descent or minimal residual, we need to form and store
the G matrix explicitly. The scalars ||AG||% and tr(RT AG) can be computed from the
successive columns of AG, which can be generated, used, and discarded. Therefore,
we need not store the matrix AG.

We will show the results of some numerical experiments with this global iteration
and compare them with other methods in §4.

2.3. Implementation of sparse mode MR and GMRES. We now describe
column-oriented algorithms which consist of minimizing the individual objective func-
tions (1.5). We perform this minimization by taking a sparse initial guess and solving
approximately the n linear subproblems

(2.3) Amj=e¢;, j=12,...,n

with a few steps of a nonsymmetric descent-type method, such as MR or untruncated
GMRES. For this method to be efficient, the iterative method must work in sparse
mode, i.e., m; is stored and operated on as a sparse vector, and the Arnoldi basis in
GMRES is kept in sparse format.
In the following MR algorithm, n; iterations are used to solve (2.3) approximately
for each column, giving an approximation to the j-th column of the inverse of A.
Each initial m; is taken from the columns of an initial guess, M. Again, we assume
numerical dropping is applied to M. In the GMRES version of the algorithm, we
never use restarting since since m; is typically very small. Also, a variant called
FGMRES [31] which allows an arbitrary Arnoldi basis, is actually used in this case.
ALGORITHM 2.3. (Minimal Residual iteration)
1. Start: set M = M,
2. For each column j=1,...,n do
3. Define m; = Me;
4. Fori=1,...,n; do

6 E. CHOW AND Y. SAAD

5 r;i=¢€; — Am]’

6. o = (it

7. mj 1= mj + a;r;

8. Apply numerical dropping to m;
9 End do

10. FEnd do

Thus, the algorithm computes the current residual r; and then minimizes the
residual norm e; — Am; ney in the set m; + ar;.

In the sparse implementation of MR and GMRES, the matrix-vector product,
SAXPY, and dot product kernels now all entirely involve sparse vectors. The matrix-
vector product is much more efficient if the sparse matrix is stored by columns since
all the entries do not need to be traversed. Efficient codes for all these kernels may
be constructed which utilize a full n-length work vector [11].

Columns from an initial guess My for the approximate inverse are used as the
initial guesses for the iterative solution of the linear subproblems. There are two
obvious choices: My = o and My = aAT. The scale factor « is chosen to minimize
the spectral radius p(I — aAM). Denoting the initial guess as My = aM and writing

%HI —aAM|)% = %tr[([—aAM)T(I —aAM)] =0

leads to

. tr(AM)
¢ wAMAM)TY

The transpose initial guess is more expensive to use because it is denser than the
identity initial guess. However, for very indefinite systems, this guess immediately
produces a symmetric positive definite preconditioned system, corresponding to the
normal error equations. Depending on the structure of the inverse, a denser initial
guess is often required to involve more of the matrix A in the computation. Interest-
ingly, the cheaper the computation, the more it uses only ‘local’ information, and the
less able it may be to produce a good approximate inverse.

The choice of initial guess also depends to some degree on ‘self-preconditioning’
which we describe next. Additional comments on the choice of initial guess will be
presented there.

2.4. Self-preconditioning. The approximate solution of the linear subprob-
lems (2.3) using an iterative method suffers from the same problems as solving the
original problem if A is indefinite or poorly conditioned. However, the linear systems
may be preconditioned with the columns that have already been computed. More
precisely, each system (2.3) for approximating column j may be preconditioned with
M} where the first j — 1 columns of M are the my, that already have been computed,
1 <k < j, and the remaining columns are the initial guesses for the my, j < k < mn.

This suggests that it is possible to define outer iterations that sweep over the
matrix, as well as inner iterations that compute each column. On each subsequent
outer iteration, the initial guess for each column is the previous result for that column.
This technique usually results in much faster convergence of the approximate inverse.

Unfortunately with this approach, the parallelism of constructing the columns of
the approximate inverse simultaneously is lost. However, there is another variant of

APPROXIMATE INVERSE PRECONDITIONERS 7

self-preconditioning that is easier to implement and more easily parallelizable. Quite
simply, all the inner iterations are computed simultaneously and the results of all the
columns are used as the self-preconditioner for the next outer iteration. Thus, the
preconditioner for the inner iterations changes only after each outer iteration. The
performance of this variant usually lies between full self-preconditioning and no self-
preconditioning. A more reasonable compromise is to compute blocks of columns in
parallel, and some (inner) self-preconditioning may be used.

Self-preconditioning is particularly valuable for very indefinite problems when
combined with a scaled transpose initial guess; the initial preconditioned system AM,
is positive definite, and the subsequent preconditioned systems somewhat maintain
this property, even in the presence of numerical dropping. Self-preconditioning with
a transpose initial guess, however, may produce worse results if the matrix A is
very ill-conditioned. In this case, the initial worsening of the conditioning of the
system is too severe, and the alternative scaled identity initial guess should be used
instead. We have also found cases where self-preconditioning produces worse results,
usually for positive definite problems; this is not surprising, since the minimizations
would progress very well, only to be hindered by self-preconditioning with a poor
approximate inverse in the early stages. Numerical evidence of these phenomena will
be provided in §4.

Algorithm 2.4 implements the Minimal Residual iteration with self-preconditioning.
In the algorithm, n, outer iterations and n; inner iterations are used. Again, M = M,
initially. We have also indicated where numerical dropping might be applied.

ALGORITHM 2.4. (Self-preconditioned Minimal Residual iteration)

1. Start: M = My
2. Forouter =1,2,...,n, do

3. For each column j=1,...,n do

4. Define s := mj = Me;

. For inner =1,...,n; do

6. r:=e; — As

7. z:=Mr

8. q:= Az

9. Q= %

10. s:=s+az

11. Apply numerical dropping to s
12. End do

13. Update j-th column of M: mj :=s
14. End do

15. End do

In a FORTRAN 77 implementation, M is stored as n sparse vectors, each holding
up to Ifil entries. M is thus constructed in place.

The multiple outer iterations used in constructing the approximate inverse sug-
gests the use of factorized updates. Factorized matrices can express denser matrices
than the sum of their numbers of elements alone. Suppose that one outer iteration
has produced the approximate inverse M;. Then a second outer iteration tries to
find M,, an approximate inverse to AM;. In general, after i outer iterations, we are
looking for the update M;;1 which minimizes

(2.4) Irwm+n I — AM My - -- M;M; 1 ||%.

8 E. CHOW AND Y. SAAD

It is also possible to construct factorized approximate inverses of the form

(25) min ||I—M2,M4M2AM1M3M21+1“2F

Maiyta
which alternate from left to right factors. This latter form is reminiscent of the
symmetric form of Kolotilina and Yeremin [23].

Since the product M1 Ms - - - M; is never formed explicitly, the factorized approach
effectively uses less memory for the preconditioner at the cost of multiplying with each
factor for each matrix-vector multiplication. This approach may be suitable for very
large problems, where memory rather than solution time is the limiting factor. The
implementation, however, is much more complex, since a sequence of matrices needs
to be maintained.

2.5. Numerical dropping strategies. There are many options for numerical
dropping. So far, to ease the presentation, we have only discussed the case where
dropping is performed on the solution vectors or matrices. Section 2.5.1 discusses
this case in more detail, while §2.5.2 discusses the case where dropping is applied to
the search directions. In the latter case, the descent property of the algorithms is
maintained.

2.5.1. Dropping in the solution. When dropping is performed on the solution,

we have options for

1. when dropping is performed, and

2. which elements are dropped.
In the previous algorithms, we have made the first point precise; however, there are
other alternatives. For example, dropping may be performed only after M or each
column of M is computed. Typically this option is too expensive, but as a compromise,
dropping may be performed at the end of a few inner iterations, before M is updated,
namely before step 13 in Algorithm 2.4. Interestingly, we found experimentally that
this option is not always better.

In GMRES, the Krylov basis vectors are kept sparse by dropping elements just
after the self-preconditioning step, before the multiplication by A.

To address which elements are dropped, we can utilize a dual threshold strategy
based on a drop tolerance, droptol, and the maximum number of elements per column,
Ifil. By limiting the maximum number of elements per column, the maximum storage
for the preconditioner is known beforehand.

The drop tolerance may be applied directly to the elements to be dropped: i.e.,
elements are dropped if their magnitude is smaller than droptol. However, we found
that this strategy could cause spoiling of the minimization, i.e., the residual norm
may increase after several steps, along with a deterioration of the quality of the
preconditioner.

If dropping small elements in m; is sub-optimal, one may ask the question whether
or not dropping can be performed more optimally. A simple perturbation analysis
will help understand the issues. We denote by m; the current column, and by 1h; the
perturbed column formed by adding the sparse column d in the process of numerical
dropping. The new column and corresponding residual are therefore

mj:mj+d, TAj:Tj—Ad.
The square of the residual norm of the perturbed m; is given by

(2.6) 175113 = llr; 113 — 2(d, ATrj) + || Ad]}3.

APPROXIMATE INVERSE PRECONDITIONERS 9

Recall that —2ATr; is the gradient of the function (1.5). As is expected from standard
results in optimization, if d is in the direction opposite to the gradient, and if it is
small enough, we can achieve a decrease of the residual norm. Spoiling occurs when
(d, ATr;) is close to zero so that for practical sizes of ||d||», || Ad||? becomes dominant,
causing an increase in the residual norm.

Consider specifically the situation where only one element is dropped, and assume
that all the columns Ae; of A have been pre-scaled so that ||Ae;||2 = 1. In this case,
d = m;;e; and the above equation becomes

(2.7) 175113 = IIrli3 = 2maj(eq, ATrs) +m3;.
A strategy could therefore be based on attempting to make the function
(2.8) 175113 = llrsll3 = —2mi;(eq, ATry) +m3;

nonpositive, a condition which is easy to verify. This suggests selecting elements to
drop in m; only at indices ¢ where the selection function (2.8) is zero or negative.
However, note that this is not entirely rigorous since in practice a few elements are
dropped at the same time. Thus we do not entirely perform dropping via numerical
values alone. In a two-stage process, we first select a number of candidate elements
to be dropped based only on the numerical size as determined by a certain tolerance.
Among these, we drop all those that satisfy the condition

Pij = —Zmij(ei,ATrj) + m?j < tols

or we can keep those Ifil elements that have the largest p;;.
Another alternative is based on attempting to achieve maximum reduction in the
function (2.8). Ideally, we wish to have

mij = (ei, A7)
since this will achieve the ‘optimal’ reduction in (2.8)

412 2 2
175112 = lIrillz = —mi;-

This leads to the alternative strategy of dropping elements in positions ¢ of m; where

mi; — (ei,ATrj) are the smallest. We found, however, that this strategy produces

poorer results than the previous one, and neither of these strategies completely elim-

inate spoiling.

2.5.2. Dropping in the search direction. Dropping may be performed on
the search direction G' in Algorithm 2.1, or equivalently in r; and z in Algorithms
2.3 and 2.4 respectively. In these cases, the descent property of the algorithms is
maintained, and the problem of spoiling is avoided.

Starting with a sparse initial guess, the allowed number of fill-ins is gradually
increased at each iteration. For an MR-like algorithm, the search direction d is derived
by dropping entries from the residual direction r. So that the sparsity pattern of the
solution z is controlled, d is chosen to have the same sparsity pattern as x, plus one
new entry, the largest entry in absolute value. No drop tolerance is used. Minimization
is performed by choosing the step-length as

(r, Ad)

(Ad, Ad)

10 E. CHOW AND Y. SAAD

and thus the residual norm for the new solution is guaranteed to be not more than the
previous residual norm. In contrast to Algorithm 2.3, the residual may be updated
with very little cost. The iterations may continue as long as the residual norm is
larger than some threshold, or a set number of iterations may be used.

If A is indefinite, the normal equations residual direction A”r may be used as the
search direction, or simply to determine the location of the new fill-in. It is interesting
to note that the largest entry in A”7r gives the greatest residual norm reduction in a
one-dimensional minimization. When fill-in is allowed to increase gradually using this
search direction, this technique becomes very similar to the adaptive selection scheme
of [18]. The effect is also similar to self-preconditioning with a transpose initial guess.

At the end of each iteration, it is possible to use a second stage that exchanges
entries in the solution with new entries if this causes a reduction in the residual norm.
This is required if the sparsity pattern in the approximate inverse needs to change as
the approximations progress. We have found this to be necessary, particularly for very
unstructured matrices, but have not yet found a strategy that is genuinely effective
[7]. As a result, approximations using numerical dropping in the solution are often
better, even though the scheme just described has a stronger theoretical justification,
similar to that of [18]. This also shows that the adaptive scheme of [18] may benefit
from such an exchange strategy.

Algorithm 2.5 implements a Minimal Residual-like algorithm with this numerical
dropping strategy. The number of inner iterations is usually chosen to be Ifil or
somewhat larger.

ALGORITHM 2.5. (Self-preconditioned MR algorithm with dropping in search
direction)

1. Start: M = M,
2. For each column j=1,...,n do

3. Define m; = Me;
4. rji=¢€; — Amj
. For inner =1,2,...,n; do
6. t:= MTj
7. Choose d to be t with the same pattern as mj;
If nnz(m;) < 1fil then add one entry which is the
largest remaining entry in absolute value
8. q:= Ad
9. o= %
10. mj :=m; +ad
11. T i=T; —aq
12. End do
13. End do

If dropping is applied to the unpreconditioned residual, then economical use of this
approximate inverse technique is not limited to approximating the solution to linear
systems with sparse coefficient matrices or sparse right-hand sides. An approximation
may be found, for example, to a factorized matrix, or a dense operator which may
only be accessed with a matrix-vector product. Such a need may arise, for instance,
when preconditioning row projection systems. These approximations are not possible
with other existing approximate inverse techniques.

We must mention here that any adaptive strategy such as this one for choosing the
sparsity pattern makes massive parallelization of the algorithm more difficult. If, for

APPROXIMATE INVERSE PRECONDITIONERS 11

instance, each processor has the task of computing a few columns of the approximate
inverse, it is not known beforehand which columns of A must be fetched into each
processor.

2.6. Cost of constructing the approximate inverse. The cost of computing
the approximate inverse is relatively high. Let n be the dimension of the linear system,
n, be the number of outer iterations, and n; be the number of inner iterations (n, = 1
in Algorithm 2.5).

We approximate the cost by the number of sparse matrix-sparse vector multi-
plications in the sparse mode implementation of MR and GMRES. Profiling for a
few problems shows that this operation accounts for about three-quarters of the time
when self-preconditioning is used. The remaining time is used primarily by the sparse
dot product and sparse SAXPY operations, and in the case of sparse mode GMRES,
the additional work within this algorithm.

If Algorithm 2.4 is used, two sparse mode matrix-vector products are used, the
first one for computing the residual; three are required if self-preconditioning is used.
In Algorithm 2.5 the residual may be updated easily and stored, or recomputed as in
Algorithm 2.4. Again, an additional product is required for self-preconditioning. The
cost is simply nn,n; times the number of these sparse mode matrix-vector multipli-
cations. Each multiplication is cheap, depending on the sparseness of the columns in
M. Dropping in the search directions, however, is slightly more expensive because,
although the vectors are sparser at the beginning, it typically requires much more
inner iterations (e.g., one for each fill-in).

In Newton iteration, two sparse matrix-sparse matrix products are required, al-
though the convergence rate may be doubled with form of Chebyshev acceleration [28].
Global iterations without self-preconditioning require three matrix-matrix products.
These costs are comparable to the column-oriented algorithms above.

3. Theoretical considerations. Theoretical results regarding the quality of
approximate inverse preconditioners are difficult to establish. However, we can prove
a few rather simple results for general approximate inverses and the convergence
behavior of the algorithms.

3.1. Nonsingularity of M. An important question we wish to address is whether
or not an approximate inverse obtained by the approximations described earlier can
be singular. It cannot be proved that M is nonsingular unless the approximation
is accurate enough, typically to a level that is impractical to attain. This is a dif-
ficulty for all approximate inverse preconditioners, except for triangular factorized
forms described in [23].

The drawback of using M that is possibly singular is the need to check the so-
lution, or the actual residual norm at the end of the linear iterations. In practice,
we have not noticed premature terminations due to a singular preconditioned system,
and this is likely a very rare event.

We begin this section with an easy proposition.

PROPOSITION 3.1. Assume that A is nonsingular and that the residual of the
approximate inverse M satisfies the relation

(3.1) 1T — AM|| < 1

where || - || is any consistent matriz norm. Then M is nonsingular.
Proof. The result follows immediately from the equality

(3.2) AM=I-(I-AM)=I-N

12 E. CHOW AND Y. SAAD

and the well-known fact that if || N|| < 1, then I — N is nonsingular. 0 We note
that the result is true in particular for the Frobenius norm, which, although not an
induced matrix norm, is consistent.

It may sometimes be the case that AM is poorly balanced and as a result I — AM
can be large. Then balancing AM can yield a smaller norm and possibly a less
restrictive condition for the nonsingularity of M. It is easy to extend the previous
result as follows.

COROLLARY 3.2. Assume that A is nonsingular and that there exist two nonsin-
gular diagonal matrices D1, Dy such that

(3.3) |I —D1AMD,| <1
where || - || is any consistent matriz norm. Then M is nonsingular.

Proof. Applying the previous result to A’ = D1 A and M' = M D5, implies that
M' = M D, will be nonsingular from which the result follows. O

Of particular interest is the 1-norm. Each column is obtained independently by
requiring a condition on the residual norm of the form

(3.4) llej — Amg|| < 7.

We typically use the 2-norm since we measure the magnitude of the residual I — AM
using the Frobenius norm. However, using the 1-norm for a stopping criterion allows
us to prove a number of simple results. We will assume in the following that we
require a condition of the form

(3-5) llej — Amjll <7

for each column. Then we can prove the following result.
PROPOSITION 3.3. Assume that the condition (3.5) is imposed on each computed
column of the approzimate inverse and let T = max; 75, 7 =1,...,n. Then,
1. Any eigenvalue X of the preconditioned matriz AM is located in the disc

(3.6) A—1<T.

2. If T < 1, then M is nonsingular.
3. If any k columns of M, with k < n, are linearly dependent then at least one
residual e; — Am; associated with one of these columns has a I-norm > 1.
Proof. To prove the first property we invoke Gershgorin’s theorem on the matrix

AM =I-R

each column of R is the residual vector r.; = e; — Am;. The column version of
Gershgorin’s theorem, see e.g., [30, 17], asserts that all the eigenvalues of the matrix
I — R are located in the union of the disks centered at the diagonal elements 1 —r;;
and with radius
n
> Iyl
i=1,i#j
In other words, each eigenvalue A must satisfy at least one inequality of the form

n

A==l < D Iryl

i=1,i#j

APPROXIMATE INVERSE PRECONDITIONERS 13

from which we get

n
A =1 < Y il < 75

i=1

Therefore, each eigenvalue is located in the disk of center 1, and radius 7. The second
property is a restatement of the previous proposition and follows also from the first
property.

To prove the last point we assume without loss of generality that the first k
columns are linearly dependent. Then there are k scalars «;, not all zero such that

k
i=1

We can assume also without loss of generality that the 1-norm of the vector of a’s is
equal to one (this can be achieved by rescaling the a’s). Multiplying through (3.7)
by A yields

k k
0= ZOL,'A’ITL,’ = Zai(ei - T‘i)
i=1 i=1

which gives

k k
E a;e; = E ;T ;.
i=1 =1

Taking the 1-norms of each side, we get

k k k

1= lewrills <D lailllrills < les| max Irifls = max |[|rs]]s.
N) € i=1,..,k i=1,...,k
=1 =1 i=1

Thus at least one of the 1-norms of the residuals r;,4 = 1,..., k must be > 1. O

We may ask the question as to whether similar results can be shown with other
norms. Since the other norms are equivalent we can clearly adapt the above results
in an easy way. For example,

(3-8) lzlls < Vallzllz and lz]l < nfl2]|o.

However, the resulting statements would be too weak to be of any practical value. We
can exploit the fact that since we are computing a sparse approximation, the number
p of nonzero elements in each column is small, and thus we replace the scalar n in the
above inequalities by p [18].

We should point out that the result does not tell us anything about the degree
of sparsity of the resulting approximate inverse M. It may well be the case that in
order to guarantee nonsingularity, we must have an M that is dense, or nearly dense.
In fact, in the particular case where the norm in the proposition is the 1-norm, it has
been proved by Cosgrove, Diaz and Griewank [10] that the approximate inverse may
be structurally dense, in that it is always possible to find a sparse matrix A for which
M will be dense if || — AM||; < 1.

14 E. CHOW AND Y. SAAD

Next we examine the sparsity of M and prove a simple result for the case where
an assumption of the form (3.5) is made.

PROPOSITION 3.4. Let B = A~! and assume that a given element b;; of B
satisfies the inequality

(3.9) |bij| > 75 [max |bik

then the element m;; is nonzero.
Proof. From the equality AM =1 — R we get

M=A"1—A'R.

Thus,
n
mij = bij — Y _ bikTk;
k=1
and
n
migl = |bis = Y biarss]
k=1
n
> byl — Y [birrig
k=1
> |bsj| — max [big[|7j]|1
k=1,n
2 |bij| — max [big|7;.
Thus, if the condition (3.9) is satisfied, we must have |m;;| > 0. 0 This tells us

that if R is small enough, then the nonzero elements of M are located in positions
corresponding to the larger elements in the inverse of A. The following negative result
is an immediate corollary.

COROLLARY 3.5. Let 7 de defined as in Proposition 3.3. If the nonzero elements
of B= A1 are T-equimodular in that

1bis| > 7 k:l,rg,ale,nlblkl’

then the nonzero sparsity pattern of M includes the nonzero sparsity pattern of A=,
In particular, if A= is dense and its elements are T-equimodular, then M is also
dense. The smaller the value of 7, the more likely the condition of the corollary will
be satisfied. Another way of stating the corollary is that we will be able to compute
accurate and sparse approximate inverses only if the elements of the actual inverse
have variations in size. Unfortunately, this is difficult to verify in advance.

3.2. Case of a nearly singular A. Consider first a singular matrix A, with
a singularity of rank one, i.e., the eigenvalue 0 is single. Let z be an eigenvector
associated with this eigenvalue. Then, each subsystem (2.3) that is being solved by
MR or GMRES will provide an approximation to the system, except that it cannot
resolve the component of the initial residual associated with the eigenvector z. In
other words, the iteration may stagnate after a few steps. Let us denote by P the
spectral projector associated with the zero eigenvalue, by mg the initial guess to the

APPROXIMATE INVERSE PRECONDITIONERS 15

system (2.3), and by rg = e; — Amyq the initial residual. For each column j, we would
have at the end of the iteration an approximate solution of the form m = mg + 4,
whose residual is

ej —Am = (e; — Amg) — Ad
= To— Aéb
aPrg + (I — P)ro — Ad.

The term Pry cannot be reduced by any further iterations. Only the norm of (I —
P)rog— Ad can be reduced by selecting a more accurate §. The MR algorithm can also
break down when Ar; vanishes, causing a division by zero in the computation of the
scalar a; in step 6 of Algorithm 2.3, although this is not a problem with GMRES.

An interesting observation is that in case A is singular, M is not too well defined.
Adding a rank-one matrix zvT to M will indeed yield the same residual

I—A[M+2"]=1-AM

R=Ry— AD.

Assume now that A is nearly singular, in that there is one eigenvalue € close to
zero with an associated eigenvector z. Note that for any vector v we have

I—A[M+20"] =1-AM —ezv”.

If z and v are of norm one, then the residual is perturbed by a magnitude of e. Viewed
from another angle, we can say that for a perturbation of order € in the residual, the
approximate inverse can be perturbed by a matrix of norm close to one.

3.3. Eigenvalue clustering around zero. We observed in many of our ex-
periments that often the matrix M obtained in a self-preconditioned iteration would
admit a cluster of eigenvalues around the origin. More precisely, it seems that if at
some point an eigenvalue of AM moves very close to zero, then this singularity tends
to persist in the later stages in that the zero eigenvalue will move away from zero
only very slowly. These eigenvalues seem to slow-down or even prevent convergence.
In this section, we attempt to analyze this phenomenon. We examine the case where
at a given intermediate iteration the matrix M becomes exactly singular. We start
by assuming that a global MR iteration is taken, and that the preconditioned matrix
AM is singular, i.e., there exists a nonzero vector z such that

AMz =0.

In our algorithms, the initial guess for the next (outer) iteration is the current M,
so the initial residual is R = I — AM. The matrix M' resulting from the next self-
preconditioned iteration, either by a global MR or GMRES step, will have a residual
of the form
(3.10) R =1—AM'= p(AM)R = p(AM)(I — AM)
in which p(t) = 1 — ts(t) is the residual polynomial. Multiplying (3.10) to the right
by the eigenvector z yields
(I-AM"Yz = p(AM)(I — AM)z
= p(AM)z
= [I—-AMs(AM)]z

zZ.

16 E. CHOW AND Y. SAAD

As a result we have
AM'2=0

showing that z is an eigenvector of AM' associated with the eigenvalue zero.

This result can be extended to column-oriented iterations. First, we assume that
the preconditioning M used in self-preconditioning all n inner iterations in a given
outer loop is fixed. In this case, we need to exploit a left eigenvector w of AM
associated with the eigenvalue zero. Proceeding as above, let m;- be the new j-th
column of the approximate inverse. We have

(3.11) ej — Amj; = p;(AM)(e; — Amy)

where p; is the residual polynomial associated with the MR or GMRES algorithm for
the j-th column, and is of the form p;(t) =1 — ts;(¢).
Multiplying (3.11) to the left by the eigenvector w? yields
w”(ej — Am}) = w’p;(AM)(e; — Am;)
wl'[I — AMs;(AM))(e; — Am;)
= w’(ej — Am;).
As aresult wT Am! = wT Am; for i = 1,2,...,n which can be rewritten as wT AM' =
wT AM. This gives
wl AM' =0,

establishing the same result on the persistence of a zero eigenvalue as for the global
iteration.

We finally consider the general column-oriented MR or GMRES iterations, in
which the self-preconditioner is updated from one inner iteration to the next. We can
still write

ej — Amj = p;(AM)(e; — Am;).

Let M’ be the new approximate inverse resulting from updating only column j. The
residual associated with M’ has the same columns as those of the residual associated
with M except for the j-th column which is given above. Therefore

I-AM' = (I—-AM){I —ejej)+ p;(AM)(e; — Amj)e]
= (I-AM)(I —eje])+ pj(AM)(I — AM)eje;
I— AM — (I — p;(AM))(I — AM)eje;
= I—AM — AMs;(AM)(I — AM)eje; .
If w is again a left eigenvector of AM associated with the eigenvalue zero, then
multiplying the above equality to the left by w” yields

wl AM' = wT AM =0,
showing once more that the zero eigenvalue will persist.

3.4. Convergence behavior of self-preconditioned MR. Next we wish to
consider the convergence behavior of the algorithms for constructing an approximate
inverse. We are particularly interested in the situation where self-preconditioning is
used, but no numerical dropping is applied.

APPROXIMATE INVERSE PRECONDITIONERS 17

3.4.1. Global MR iterations. When self-preconditioning is used in the global
MR iteration, the matrix which defines the search direction is Z;, = MR}, where Ry,
is the current residual. Therefore, the algorithm (without dropping) is as follows.

1. Rp:=1-— AM;

2. 7 := MRy

.— (Rk:AZk)
3. ap = (AZy,AZy)

4. Mk+1 = Mk + aka
At each step the new residual matrix Ry satisfies the relation

Riy1 = I—AMppa
= I—A(Mk +aka)
= Rk - OékAZk.

Our first observation is that Ry is a polynomial in Ry. This is because, from the
above relation,

Riy1 = Rp— o AMR,
= Rp—ap(I — Ri)Ry
(3.12) = (1 - Oék)Rk + akRﬁ.

Thus, by induction,
Ri41 = par (Ro)

in which p; is a certain polynomial of degree j. Throughout this section we use the
notation

(3.13) Bk = AMk =1- Rk.
The following recurrence is easy to infer from (3.12),
(314) Bk+1 = By + Othk(I - Bk)

Note that By is also a polynomial of degree 2% in By. In particular, if the initial By
(equivalently Ry) is symmetric, then all subsequent Ry’s and By,’s are also symmetric.
This is achieved when the initial M is a multiple of A7, i.e., when

MO = aoAT -

We are now ready to prove a number of simple results.

PROPOSITION 3.6. If the self-preconditioned MR iteration converges, then it does
so quadratically.

Proof. Define for any «,

R(a) = (1 —a)Ry, + aR:.

Recall that ay, achieves the minimum of ||R(a)||r over all a’s. In particular,

[Bit1llr = min[|R(a)|r
(3.15) < IRMr = IBE|IF
< Bkl

18 E. CHOW AND Y. SAAD

This proves quadratic convergence at the limit. O

The following proposition is a straightforward generalization to the matrix case
of a well-known result [13] concerning the convergence of the vector Minimal Residual
iteration.

PROPOSITION 3.7. Assume that at a given step k, the matriz By, is positive
definite. Then, the following relation holds,

(3.16) |Rit1llF < ||RillF sin Z(Rg, BxRi)

with

<R7 BR) Hmin (B)
3.17 cos Z(R,BR) = >
(3.17) (B BR) = (RILTBRIr > omas(B)

in which pmin(B) is the smallest eigenvalue of (B + BT) and 0100 (B) is the largest
singular value of B.
Proof. Start with

| Ris1ll} = (Ris1, Rk — ek AZk) = (Ris1, Ri) — a (Riy1, AZ) .

By construction, the new residual Ry is orthogonal to AZy, in the sense of the (-, -)
inner product, and as a result, the second term in the right-hand side of the above
equation vanishes. Noting that AZ; = By Ry, we thus obtain

|Res1llz = (Rr — axBrRy, Ry)
= (Rg, Ry) — a (B Ry, Ry,)

| Ry |7 (1_ (Br Rk, R (BkRk,Rk)>
F (Br Ry, By Ri) (Ry,Ry)

By Ry, Ry) 2
Rl 1_(<—’) .
| ’“”F< BT

The result (3.16) follows immediately.
To derive (3.17), note that

(3.18)

n

(3.19) (R,BR) =) (Bri,r;)

i=1
in which r; is the i-th column of R, and similarly

(3.20) (BR, BR) = En:(Br,-, Bry).
i=1

For each ¢ we have

B+ BT
BT

Bri,ri) 2 Amin
(Bri,ri) > A (5

and
| Brill < 0maz(B)]|rs]|-

The result follows after substituting these relations in the ratio (3.17). a

APPROXIMATE INVERSE PRECONDITIONERS 19

Note that because of (3.16) the Frobenius norm of Ry, is bounded from above
for all k, specifically, ||Ry+1||F < ||Ro||r for all k. A consequence is that the largest
singular value of Byy1 = I — Rp41 is also bounded from above. Specifically, we have

a'maa:(Bk) = Umaw(I - Rk) <1+ Uma:c(Rk) <1+ ”Rk”F <1+ ”RO”F .

Assume now that My = agAT so that all matrices By, are symmetric. If in addition,
each By, is positive definite with its smallest eigenvalue bounded from below by a pos-
itive number, then By will converge to the identity matrix. Further, the convergence
will be quadratic at the limit.

3.4.2. Column-oriented MR iterations. The convergence result may be ex-
tended to the case where each column is updated individually by exactly one step
of the MR algorithm. Let M be the current approximate inverse at a given sub-
step. The self-preconditioned MR iteration for computing the j-th column of the
next approximate inverse is obtained by the following sequence of operations.
rj:=e; — Am; = e; — AMe;

t]‘ = MT‘j

% = (il ity

. myi=my + ajt;

Note that a; can be written as

B o

(rj, AMr;) _ (rj,Brj)

% = (AMr;, AMr;) ~ (Bry, Br))

where we define
B=AM

to be the preconditioned matrix at the given substep. We now drop the index j to
simplify the notation. The new residual associated with the current column is given
by

r"Y = r— oAt
= r—aAMr
= r—abBr.

We use the orthogonality of the new residual against AMr to obtain
[rmell3 = 713 = o®|| Br*.

Replacing a by its value defined above we get

A A Br,r) \°
e 2 = 12 |1 - (— .
2= Il |1 =\ [Br Rl

Thus, at each inner iteration, the residual norm for the j-th column is reduced ac-
cording to the formula

(3.21) [[r™*|l2 = ||7||2 sin Z(r, Br)

in which /(u,v) denotes the acute angle between the vectors u and v. Assuming that
each column converges, the preconditioned matrix B will converge to the identity.

20 E. CHOW AND Y. SAAD

As a result of this, the angle /(r, Br) will tend to Z(r,r) = 0 and therefore the
convergence ratio sin / (r, Br) will also tend to zero, showing superlinear convergence.

We now consider equation (3.21) more carefully in order to analyze more explicitly
the convergence behavior. We will denote by R the residual matrix R = I — AM. We
observe that

—a B
sin/(r,Br) = minw
@ T2
lr = Brila _ [IRr[l2
- lIrll2 Il
< |R]l2-

This results in the following statement.

PROPOSITION 3.8. Assume that the self-preconditioned MR algorithm is employed
with one inner step per iteration and no numerical dropping. Then the 2-norm of each
residual e; — Am; of the j-th column is reduced by a factor of at least ||I — AM||2,
where M is the approzimate inverse before the current step, i.e.,

(3.22) Ir7ellz < T — AMl2 |Ir;ll2

In addition, the Frobenius norm of the residual matrices Ry = I — AMj}, obtained after
each outer iteration, satisfies

(3.23) |Rerlle < [|Re%-

As a result, when the algorithm converges, it does so quadratically.
Proof. Inequality (3.22) was proved above. To prove quadratic convergence, we
first transform this inequality by using the fact that || X||s < || X || to obtain

lr7<ll2 < [|Rejlle [I7jlla-

Here the k index corresponds to the outer iteration and the j-index to the column.
We note that the Frobenius norm is reduced for each of the inner steps corresponding
to the columns, and therefore

I1Br.illp < || Rillp-
This yields
Itz < IRl llrsli3
which, upon summation over j gives

I Rk4allF < 1Rl

This completes the proof. d
It is also easy to show a similar result for the following variations:
1. MR with an arbitrary number of inner steps,
2. GMRES(m) for an arbitrary m.
These follow from the fact that the algorithms deliver an approximate column which
has a smaller residual than what we obtain with one inner step MR.
We emphasize that quadratic convergence is guaranteed only at the limit and
that the above theorem does not prove convergence. In the presence of numerical
dropping, the proposition does not hold.

APPROXIMATE INVERSE PRECONDITIONERS 21

4. Numerical experiments and observations. Experiments with the algo-
rithms and options described in §2 were performed with matrices from the Harwell-
Boeing sparse matrix collection [12], and matrices extracted from example problems
in the FIDAP fluid dynamics analysis package [16]. The matrices were scaled so that
the 2-norm of each column is unity. In each experiment, we report the number of
GMRES(20) steps to reduce the initial residual of the right-preconditioned linear sys-
tem by 1075. A zero initial guess was used, and the right-hand-side was constructed
so that the solution is a vector of all ones. A dagger (1) in the tables below indicates
that there was no convergence in 500 iterations. In some tables we also show the value
of the Frobenius norm (1.3). Even though this is the function that we minimize, we
see that it is not always a reliable measure of GMRES convergence. All the results
are shown as the outer iterations progress. In Algorithm 2.4 (dropping in solution
vectors) one inner iteration was used unless otherwise indicated; in algorithm 2.5
(dropping in residual vectors) one additional fill-in was allowed per iteration. Various
codes in FORTRAN 77, C++, and Matlab were used, and run in 64-bit precision on
Sun workstations and a Cray C90 supercomputer.

We begin with a comparison of Newton, ‘global’ and column-oriented iterations.
Our early numerical experiments showed that in practice, Newton iteration converges
very slowly initially and is more adversely affected by numerical dropping. Global
iterations were also worse than column-oriented iterations, perhaps because a single
a defined by (2.2) is used, as opposed to one for each column in the column-oriented
case. Table 4.1 gives some numerical results for the WEST0067 matrix from the
Harwell-Boeing collection; the number of GMRES iterations is given as the num-
ber of outer iterations increases. The MR iteration used self-preconditioning with a
scaled transpose initial guess. Dropping based on numerical values in the intermedi-
ate solutions was performed on a column-by-column basis, although in the Newton
and global iterations this restriction is not necessary. In the presence of dropping
(Ifil = 10), we did not find much larger matrices where Newton iteration gave con-
vergent GMRES iterations. Scaling each iterate M; by 1/||AM;||; did not alleviate
the effects of dropping. The superior behavior of global iterations in the presence of
dropping in Table 4.1 was not typical.

TABLE 4.1
WESTO0067: Newton, global, and column MR iterations.

No dropping
1 2 3 4

Newton t | 414 | 158 | 100 41
Global 228 | 102 25 16 11
MR 130 35 13 10 6

Dropping: Ifil = 10, droptol = 0.001

1 2 3 4 5
Newton 463 t | 435 t | 457
Global 241 87 46 35 26
MR 281 120 86 61 43

The eigenvalues of the preconditioned WEST0067 matrix are plotted in Fig. 4.1,
both with and without dropping, using column-oriented MR iterations. As the it-
erations proceed, the eigenvalues of the preconditioned system become closer to 1.
Numerical dropping has the effect of spreading out the eigenvalues. When dropping
is severe and spoiling occurs, we have observed two phenomena: either dropping causes

22

E. CHOW AND Y. SAAD

some eigenvalues to become negative, or some eigenvalues stay clustered around the

origin.
03
0.2 al
01 o 4
) o
O@Om
o S o
o@--0----a g @00 04:0--0--0 o g
Q@ @
0
w0
o o
-0.1F © 1
-0.2 al
-03
0 02 04 06 08 1 12
(a) no dropping, no, = 2
03
0.2 al
o
° o
01 o oo J
o o o ©o o °
. o ° OgO o
@O el 1o} o [s] Boo @O 8 .
© o OO o
o %
o o
° o © oo
01b a Q 1
o o
o
-0.2 al
-03
0 02 04 06 08 1 12

(c) Ifil =10,m0 =2

-0.1

-0.21

rD.eO

0.2

Ot

14

(d) Ifil =10,n =4

Fic. 4.1. Eigenvalues of preconditioned system, WEST0067

Next we show some results on matrices that arise from solving the fully-coupled
Navier-Stokes equations. The matrices were extracted from the FIDAP package at the

final nonlinear iteration of each problem in their Examples collection. The matrices are

from 2-dimensional finite element discretizations using 9-node quadrilateral elements
for velocity and temperature, and linear discontinuous elements for pressure.

Table 4.2 lists some statistics about all the positive definite matrices from the
collection. The combination of ill-conditioning and indefiniteness of the other matrices

was too difficult for our methods, and their results are not shown here.

All the matrices are also symmetric, except for Example 7. None of the matrices

could be solved with ILU(0) or ILUT [32], a threshold incomplete LU factorization,

0.2 04 0.6 08 1 12
(b) no dropping, n, = 4
0. T =)
o
o
0.2 o al
o
o
© O:
01 5 6o 1
O: ° °
o° °
[9) © o
b8 o [o ©--000 - 0--0 q
o o e
o © ©
o o
-0} o Q.00 4
° o
o
o
-02F o 4
o
o
-0.3
0 0.2 04 0.6 08 1 12

14

APPROXIMATE INVERSE PRECONDITIONERS 23

TABLE 4.2
FIDAP Ezample matrices.

Example n nnz
3 1821 | 52685 | Flow past a circular cylinder
7 1633 | 54543 | Natural convection in a square cavity
9 3363 | 99471 | Jet impingement in a narrow channel
10 2410 | 54840 | 2D flow over multiple steps in a channel
13 2568 | 75628 | Axisymmetric flow through a poppet valve
15 6867 | 98671 | 2D spin up of a liquid in an annulus
33 1733 | 22189 | 2D radiation heat transfer in a cavity

even with large amounts of fill-in. Our experience with these matrices is that they
produce unstable L and U factors in (1.2).

Table 4.3 shows the results of preconditioning with the approximate inverse, using
dropping in the residual search direction. Since the problems are very ill-conditioned
but positive definite, a scaled identity initial guess with no self-preconditioning was
used. The columns show the results as the iterations and fill-in progress. Convergent
GMRES iterations could be achieved even with [fil as small as 10, showing that an
approximate inverse preconditioner much sparser than the original matrix is possible.

TABLE 4.3
Number of GMRES iterations vs. 1fil.

Example 10 20 30 40 50 60 70
3 159 | 133 47 42 40 38 38

7 33 23 18 17 14 14 14

9 203 | 117 67 51 47 41 41

10 438 | 191 | 107 | 107 81 66 63

13 56 39 34 28 26 24 24

15 103 83 62 54 53 52 52

33 249 | 105 86 44 40 39 39

For comparison, we solve the same problems using perturbed ILU factorizations.
Perturbations are added to the inverse of diagonal elements to avoid small pivots,
and thus control the size of the elements in the L and U factors. We use a two-
level block ILU strategy called BILU(0)-SVD(«), that uses a modified singular value
decomposition to invert the blocks. When a block A = ULVT needs to be inverted,
it is replaced by the perturbed inverse M = VE~1U”, where ¥ is ¥ with its singular
values thresholded by aoq, a factor of the largest singular value.

Table 4.4 shows the results, using a block size of 4. The method is very successful
for this set of problems, showing results comparable to approximate inverse precon-
ditioning, but with less work to compute the preconditioner. None of the problems
converged, however, for & = 0.1, and there was not one « that gave the best result
for all problems.

We now show our main results in Table 4.5 for several standard matrices in
the Harwell-Boeing collection. All the problems are nonsymmetric and indefinite,
except for SHERMANT1 which is symmetric, negative definite. In addition, SAYLR3
is singular. SHERMAN2 was reordered with reverse Cuthill-McKee to attempt to
change the sparsity pattern of the inverse. Again, we show the number of GMRES
iterations to convergence against the number of outer iterations used to compute the
approximate inverse. A scaled transpose initial guess was used. When columns in
the initial guess contained more than Ifil nonzeros, dropping was applied to the guess.

24 E. CHOW AND Y. SAAD

TABLE 4.4
BILU(0)-SVD(a) preconditioner.

Example | a=0.3 | a= 1.0

3 t 170

7 19 39

9 28 72
10 66 140
13 20 40
15 t 119
33 t 149

Numerical dropping was applied to the intermediate vectors in the solution, retaining
Ifil nonzeros and using no drop tolerance.

TABLE 4.5
Number of GMRES(20) iterations vs. mo.

Matrix | n [ILUO) [g/m [p/u il [n;] 1] 2] 3] 4] 5
PORES2 1244 44 m P 30 2 t t 52 30 19
PORES3 532 38 m u 10 1 t t | 421 | 150 | 112
SHERMAN1 | 1000 32 m u 10 1 224 | 187 96 74 60
SHERMAN2 | 1080 8 m P 50 1 t t | 147 46 | 136
SHERMAN3 | 5005 56 m u 10 1 499 | 363 | 239 | 192 | 148
SHERMAN4 | 1104 22 m u 10 1 87 69 43 42 41
SHERMANS | 3312 22 g P 20 2 t | 148 | 107 70 60
SAYLR3 1000 t m u 10 1 223 | 188 96 74 60
WESTO0497 | 497 tl g | p | 50] 5 t1 +] t] 8] 20
WEST0989 989 t m P 50 2 t t | 303 t t
GRE1107 1107 t1l m | p |50] 2] 42 f P
GRE216B 216 tlm | p | 5] 1 3| 3| 3| 3| 3
NNC261 261 t m P 20 2 t 39 20 17 14
NNC666 666 t m P 50 2 t t | 427 | 147 | 173

g/m = GMRES or MR
p/u = self-preconditioned or unself-preconditioned

For problems SHERMAN2, WEST0989, GRE1107 and NNC666, the results be-
come worse as the outer iterations progress. This spoiling effect is due to the fact that
the descent property is not maintained when dropping is applied to the intermediate
solutions. This is not the case when dropping is applied to the search direction, as
seen in Table 4.3.

Except for SAYLR3, the problems that could not be solved with ILU(0) also could
not be solved with BILU(0)-SVD(«), nor with ILUTP, a variant of ILUT more suited
to indefinite problems since it uses partial pivoting to avoid small pivots [29]. ILUTP
also substitutes (10~ + &) times the norm of the row when it is forced to take a zero
pivot, where § is the drop tolerance. ILU factorization strategies simply do not apply
in these cases.

We have shown the best results after a few trials with different parameters. The
method is sensitive to the widely differing characteristics of general matrices, and
apart from the comments we have already made for selecting an initial guess and
whether or not to use self-preconditioning, there is no general set of parameters that
works best for constructing the approximate inverse.

The following two tables illustrate some different behaviors that can be seen for
three very different matrices. LAPLO0324 is a standard symmetric positive definite
2-D Laplacian matrix of order 324. WEST0067 and PORES3 are both indefinite;

APPROXIMATE INVERSE PRECONDITIONERS 25

WESTO0067 has very little structure, while PORES3 has a symmetric pattern. Ta-
ble 4.6 shows the number of GMRES(20) iterations and Table 4.7 shows the Frobenius
norm of the residual matrix against the number of outer iterations that were used to
compute the approximate inverse.

TABLE 4.6
Number of GMRES(20) iterations vs. no.

Matrix | Ifil | init | p/u || 1 | 2 | 3 | 4 | 5
WEST0067 | none | A7 P 130 [35 13 [10 6
none | AT u 484 | 481 t | 472 t

none | I P T T T T T

10 | AT p 281 | 120 86 61 43

LAPL0324 | none | AT P 466 | 200 | 50 | 21 12
none | AT u 21 17 12 12 10

none | I P 16 | 15 11 11 9

10 | AT u 30 | 22 17 | 17| 17

PORES3 none | AT P t T T t t
none | AT | u 1 t | 214 | 174 | 116

10 | AT u 1 t | 421 | 150 | 112

TABLE 4.7

| T — AM||F vs. no.

PORES3 none | AT
none AT
10 | AT

10.78 9.30 8.25 7.66 7.16
12.95 | 12.02 | 11.48 | 10.82 | 10.20
12.94 | 12.02 | 11.48 | 10.82 | 10.23

Matrix | W] init [p/u || 1] 2] 3] 4] 5
WESTO0067 | none | AT P 4.43 3.21 2.40 1.87 0.95
none | AT u 6.07 6.07 6.07 6.07 6.07
none 1 P 8.17 8.17 8.17 8.17 8.17
10 | AT P 4.77 | 4.26 | 4.42 | 4.92 6.07
LAPL0324 none | AT P 7.91 5.69 4.25 3.12 2.23
none | AT u 6.62 4.93 4.00 3.41 3.00
none 1 P 5.34 4.21 3.53 3.08 2.75
10 | AT u 6.54 4.81 4.07 3.82 3.92

p

u

u

5. Practical variations and applications. Approximate inverses can be ex-
pensive to compute for very large and difficult problems. However, their best potential
is in combinations with other techniques. In essence, we would like to apply these
techniques to problems that are either small, or for which we start close to a good
solution in a certain sense.

We saw in Table 4.5 that approximate inverses work well with small matrices,
most likely because of their local nature. In the next section, we show how smaller
approximate inverses may be used effectively in incomplete block tridiagonal factor-
izations.

5.1. Incomplete block tridiagonal factorizations. Incomplete factorization
of block tridiagonal matrices has been studied extensively in the past decade [1, 2,
3, 4,9, 21, 22], but there have been very few numerical results reported for general
sparse systems. Banded or polynomial approximations to the pivot blocks have been
primarily used in the past, for systems arising from finite difference discretizations
of partial differential equations. There are currently very few options for incomplete

26 E. CHOW AND Y. SAAD

factorizations of block matrices that require approximate inversion of general large,
sparse blocks.
The inverse-free form of block tridiagonal factorization is

(5.1) M= (D' —LA)D(D! —Uy,)

where L4 is the strictly lower block tridiagonal part of the coefficient matrix A, Ux
is the corresponding upper part, and D is a block diagonal matrix whose blocks D;
are defined by the recurrence

(5.2) D; = (Ai; — Aiic1Di—1Ai1:) ™"

starting with Dy = 0. The factorization is made incomplete by using approximate
inverses rather than the exact inverse in (5.2). This inverse-free form only requires
matrix-vector multiplications in the preconditioning operation.

We illustrate the use of approximate inverses in these factorizations with Example
19 from FIDAP, the largest nonsymmetric matrix in the collection (n = 12005, nnz =
259879). The problem is an axisymmetric 2D developing pipe flow, using the two-
equation k-e¢ model for turbulence. A constant block size of 161 was used, the smallest
block size that would yield a block tridiagonal system (the last block has size 91).
Since the matrix arises from a finite element problem, a more careful selection of the
partitioning may yield better results. In the worse case, a pivot block may be singular;
this would cause difficulties for several approximate inverse techniques such as [23] if
the sparsity pattern is not augmented. In our case, a minimal residual solution in the
null space would be returned.

Since the matrix contains different equations and variables, the rows of the system
were scaled by their 2-norms, and then their columns were scaled similarly. A Krylov
subspace size for GMRES of 50 was used. Table 5.1 first illustrates the solution with
BILU(0)-SVD(a) with a block size of 5 for comparison. The infinity-norm condition
of the inverse of the block LU factors is estimated with ||(LU)'e||o, where e is the
vector of all ones. This condition estimate decreases dramatically as the perturbation
is increased.

TABLE 5.1
Ezample 19, BILU(0)-SVD(«).

condition | GMRES
«a estimate steps
0.000 1.e46 T
0.001 7.e47 t
0.010 8.e26 t
0.050 3.e08 t
0.100 3.e05 t
0.500 129. 87
1.000 96. 337

Table 5.2 shows the condition estimate, number of GMRES steps to convergence,
timings for setting up the preconditioner and the iterations, and the number of nonze-
ros in the preconditioner. The method BTIF denotes the inverse-free factorization
(5.1), and may be used with several approximate inverse techniques. MR-s(ifil) and
MR-r(lfil) denote the minimal residual algorithm using dropping in the solution and
residual vectors, respectively, and LS is the least squares solution using the sparsity
pattern of the pivot block as the sparsity pattern of the approximate inverse. The

APPROXIMATE INVERSE PRECONDITIONERS 27

MR methods used Ifil of 10, and specifically, 3 outer and 1 inner iteration for MR-s,
and [fil iterations for MR-r. Self-preconditioning and transpose initial guesses were
used. LS used the DGELS routine in LAPACK to compute the least squares solu-
tion. The experiments were carried out on one processor of a Sun Sparcstation 10.
The code for constructing the incomplete block factorization is somewhat inefficient
in two ways: it transposes the data structure of the pivot block and the inverse (to
use column-oriented algorithms), and it counts the number of nonzeros in the sparse
matrix-matrix multiplication before performing the actual multiplication.

TABLE 5.2
Ezample 19, block tridiagonal incomplete factorization.

cond. | GMRES CPU time (s) nonzeros

est. steps precon solve total precon

BILU(0)-SVD(0.5) 129. 87 15.98 | 143.18 | 159.16 983 875
BTIF-MR-s(10) 119. 186 56.20 | 113.41 | 169.61 120 050
BTIF-MR-r(10) 92. 239 77.85 | 142.80 | 220.65 120 050
BTIF-MR-s(5) 382. 328 44.58 | 186.34 | 230.92 60 025
BTIF-MR-r(5) 93. 527 34.86 | 295.51 | 330.37 60 025
BTIF-LS 5.e95 t 290.02 t t 453 605

The timings show that BTIF-MR-s(10) is comparable to BILU(0)-SVD(0.5) but
uses much less memory. Although the actual number of nonzeros in the matrix is
259 879, there were 39 355 block nonzeros required in BILU(0), and therefore almost a
million entries that needed to be stored. BILU(0) required more time in the iterations
because the preconditioner was denser, and needed to operate with much smaller
blocks. The MR methods produced approximate inverses that were sparser than
the original pivot blocks. The LS method produces approximate inverses with the
same number of nonzeros as the pivot blocks, and thus required greater storage and
computation time. The solution was poor, however, possibly because the second,
third, and fourth pivot blocks were poorly approximated. In these cases, at least one
local least squares problem had linearly independent columns. No pivot blocks were
singular.

5.2. Improving a preconditioner. In all of our previous algorithms, we sought
a matrix M to make AM close to the identity matrix. To be more general, we can
seek instead an approximation to some matrix B. Thus, we consider the objective
function

(5.3) F(M)=||B - AM||%

in which B is some matrix to be defined. Once we find a matrix M whose objective
function (5.3) is small enough, then the preconditioner for the matrix A is defined by

P=MB™.

This implies that B is a matrix which is easy to invert, or rather, that solving systems
with B should be inexpensive. At one extreme when B = A, the best M is the identity
matrix, but solves with B are expensive. At the other extreme, we find our standard
situation which corresponds to B = I, and which is characterized by trivial B-solves
but expensive to obtain M matrices. In between these two extremes there are a

number of appealing compromises, perhaps the simplest being the block diagonal of
A.

28 E. CHOW AND Y. SAAD

Another way of viewing the concept of approximately minimizing (5.3) is that of
improving a preconditioner. Here B is an existing preconditioner, for example, an
LU factorization. If the factorization gives an unsatisfactory convergence rate, it is
difficult to improve it by attempting to modify the L and U factors. One solution
would be to discard this factorization and attempt to recompute a fresh one, possibly
with more fill-in. Clearly, this may be wasteful especially in the case when this process
must be iterated a few times due to persistent failures.

For a numerical example of improving a preconditioner, we use approximate in-
verses to improve the block-diagonal preconditioners for the ORSREG1, ORSIRR1
and ORSIRR2 matrices. The experiments used dropping on numerical values with
Ifil =10, and droptol = 0.001. In Table 5.3, block size is the block size of the block-
diagonal preconditioner, and block precon is the number of GMRES iterations required
for convergence when the block-diagonal preconditioner is used alone. The number of
GMRES iterations is shown against the number of outer iterations used to improve
the preconditioner.

TABLE 5.3
Improving a preconditioner.

block block
Matrix n size | precon 1 2 3 4 5
ORSREG1 | 2205 21 117 49 59 95 73 71
ORSIRR1 1030 8 253 98 | 104 | 108 85 88
ORSIRR2 833 8 253 || 136 99 98 92 81

Besides these applications, we have used approximate inverse techniques for sev-
eral other purposes. Like in (5.3), we can generalize our problem to minimize

(5.4) f(@) = |Ib— Az|%

where b is a right-hand side and z is an approximate sparse solution. The right-hand
side b does not need to be sparse if dropping is used in the search direction. Sparse
approximate solutions to linear systems may be used in forming preconditioners, for
example, to form a sparse approximation to a Schur complement or its inverse. See
[7] and [8] for more details.

6. Conclusion. This paper has described an approach for constructing approx-
imate inverses via sparse-sparse iterations. The sparse mode iterations are designed
to be economical, however, their cost is still not competitive with ILU factorizations.
Other approximate inverse techniques that use adaptive sparsity selection schemes
also suffer from the same drawback. However, several examples show that these pre-
conditioners may be applied to cases where other existing options, such as perturbed
ILU factorizations, fail.

More importantly, our conclusion is that the greatest value of sparse approximate
inverses may be their use in conjunction with other preconditioners. We demon-
strated this with incomplete block factorizations and improving block diagonal pre-
conditioners. They have also been used successfully for computing sparse solutions
when constructing preconditioners, and one variant has the promise of computing
approximations to operators that may be effectively dense.

Two limitations of approximate inverses in general are their local nature, and
the question of whether or not an inverse can be approximated by a sparse matrix.
Their local nature suggests that their use is more effective on small problems, for

APPROXIMATE INVERSE PRECONDITIONERS 29

example the pivot blocks in incomplete factorizations, or else large amounts of fill-in
must be allowed. In current work, Tang [33] couples local inverses over a domain in
a Schur complement approach. Preliminary results are consistently better than when
the approximate inverse is applied directly to the matrix, and its effect has similarities
to [7].

In trying to ensure that there is enough variation in the entries of the inverse for
a sparse approximation to be effective, we have tried reordering to reduce the profile
of a matrix. In a very different technique, Wan et. al. [34] compute the approximate
inverse in a wavelet space, where there may be greater variations in the entries of the
inverse, and thus permit a better sparse approximation.

Acknowledgments. The authors are grateful to the referees for their comments
which substantially improved the quality of this paper. The authors also wish to
acknowledge the support of the Minnesota Supercomputer Institute which provided
the computer facilities and an excellent environment to conduct this research.

REFERENCES

[1] O. AXELSSON, Incomplete block matriz factorization preconditioning methods. The ultimate
answer? J. Comput. Appl. Math., 12 & 13 (1985), pp. 3-18.
, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.
O. AXELSSON, S. BRINKKEMPER, AND V. P. IL’IN, On some versions of incomplete block-matriz
factorization iterative methods, Lin. Alg. Appl., 58 (1984), pp. 3-15.
O. AXELSSON AND B. POLMAN, On approzimate factorization methods for block matrices suit-
able for vector and parallel processors, Lin. Alg. Appl., 77 (1986), pp. 3-26.
[5] M. W. BENSON, lterative solution of large scale linear systems, Master’s Thesis, Lakehead
M.

University, Thunder Bay, ON, 1973.

W. BENSON AND P. O. FREDERICKSON, Iterative solution of large sparse linear systems

arising in certain multidimensional approzimation problems, Utilitas Math., 22 (1982),

pp. 127-140.

[7] E. CHOW AND Y. SAAD, Approzimate inverse techniques for block-partitioned matrices, Tech.
Report UMSI 95/13, Minnesota Supercomputer Institute, University of Minnesota, Min-
neapolis, MN, 1995.

, ILUS: an incomplete LU factorization for matrices in sparse skyline format, Tech.
Report UMSI 95/78, Minnesota Supercomputer Institute, University of Minnesota, Min-
neapolis, MN, 1995.

[9] P. Concus, G. H. GOLUB, AND G. MEURANT, Block preconditioning for the conjugate gradient
method, STAM J. Sci. Stat. Comput., 6 (1985), pp. 309-332.

[10] J. D. F. CosGROVE, J. C. Diaz, AND A. GRIEWANK, Approzimate inverse preconditioning for
sparse linear systems, Intl. J. Comp. Math., 44 (1992), pp. 91-110.

[11] I. S. DurF, A. M. ErisMAN, AND J. K. REID, Direct Methods for Sparse Matrices, Oxford
University Press, London, 1989.

[12] I. S. DUFF, R. G. GRIMES, AND J. G. LEWIS, Sparse matriz test problems, ACM Trans. Math.
Softw., 15 (1989), pp. 1-14.

[13] S. C. EisENSTAT, H. C. ELMAN, AND M. H. SCcHULTZ, Variational iterative methods for non-
symmetric systems of linear equations, SIAM J. Num. Anal., 20 (1983), pp. 345-357.

[14] H. C. ELMAN, A stability analysis of incomplete LU factorizations, Math. Comp., 47 (1986),
pp. 191-217.

, Relazed and stabilized incomplete factorizations for non-self-adjoint linear systems,
BIT, 29 (1989), pp. 890-915.

[16] M. ENGELMAN, FIDAP: Ezamples Manual, Revision 6.0, Fluid Dynamics International,
Evanston, IL, 1991.

[17] G. H. GoLuB AND C. F. VAN LoAN, Matriz Computations, The John Hopkins University Press,
Baltimore, MD, second ed., 1989.

[18] M. GROTE AND T. HUCKLE, Parallel preconditioning with sparse approzimate inverses, SIAM
J. Sci. Comput., (to appear).

[19] M. GROTE AND H. D. SIMON, Parallel preconditioning and approzimate inverses on the Con-
nection Machine, in Parallel Processing for Scientific Computing, R. F. Sincovec, D. E.

30 E. CHOW AND Y. SAAD

Keyes, L. R. Petzold, and D. A. Reed, eds., SIAM, Philadelphia, PA, 1993, pp. 519-523.
Vol. 2.
[20] A. S. HOUSEHOLDER, The Theory of Matrices in Numerical Analysis, Dover, New York, 1964.
[21] L. Yu. KOLOTILINA AND A. YU. YEREMIN, On a family of two-level preconditionings of the in-
complete block factorization type, Soviet J. Numer. Anal. Math. Model., 1 (1986), pp. 293—

320.

[22] , Incomplete block factorizations as preconditioners for sparse SPD matrices, Tech. Re-
port EM-RR 6/92, Elegant Mathematics, Inc., Bothell, WA, 1992.

[23] , Factorized sparse approximate inverse preconditionings 1. Theory, STAM J. Mat. Anal.,
14 (1993), pp. 45-58.

[24] , Factorized sparse approzimate inverse preconditionings I1. Solution of 3D FE systems

on massively parallel computers, Intl. J. High Speed Computing, 7 (1995), pp. 191-215.

[25] M. MAGOLU, Modified block-approzimate factorization strategies, Numer. Math., 61 (1992),
pp- 91-110.

[26] H. MANOUZI. Private communication, 1993.

] V. PAN AND J. REIF, Efficient parallel solution of linear systems, in Proc. 17th Annual ACM
Symposium on Theory of Computing, 1985, pp. 143-152.

[28] V. PAN AND R. SCHREIBER, An improved Newton iteration for the generalized inverse of a
matriz, with applications, SIAM J. Sci. Stat. Comput., 12 (1991), pp. 1109-1130.

[29] Y. SAAD, Preconditioning techniques for indefinite and nonsymmetric linear systems, J. Comp.
Appl. Math., 24 (1988), pp. 89-105.

[30] , Numerical Methods for Large Eigenvalue Problems, Halstead Press, New York, 1992.

[31] , A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Stat. Comput.,
14 (1993), pp. 461-469.

[32] , ILUT: a dual threshold incomplete ILU factorization, Num. Lin. Alg. Appl., 1 (1994),

pp- 387-402.

[33] W.-P. TANG, Effective sparse approzimate inverse preconditioners. In preparation.

[34] W. L. WaAN, T. F. CHAN, B. SMITH, AND W.-P. TANG, Fast wavelet-based sparse approzimate
inverse preconditioners. In preparation.

